對(duì)鈦合金銑削加工中的過程阻尼效應(yīng)進(jìn)行分析及實(shí)驗(yàn)驗(yàn)證。鈦合金是航空常用的、典型的難加工材料,其單位面積切削力大,在加工中極易產(chǎn)生顫振、惡化表面質(zhì)量、損壞刀具。鈦合金切削加工的顫振問題,是制約航空制造效率和質(zhì)量的重要問題。過程阻尼效應(yīng)來源于后刀面與工件表面振動(dòng)波紋干涉產(chǎn)生的犁耕效應(yīng),利用隱式龍格庫塔法,計(jì)算典型鈦合金材料銑削加工中干涉產(chǎn)生的侵入面積以及阻力,建立考慮過程阻尼的非線性模型。計(jì)算結(jié)果表明:相對(duì)于傳統(tǒng)的、不考慮過程阻尼的線性動(dòng)力學(xué)模型,非線性模型中的低速區(qū)極限切深可顯著提高;實(shí)驗(yàn)結(jié)果表明:該模型能較為準(zhǔn)確地預(yù)測低速區(qū)的穩(wěn)定性極限,為加工參數(shù)選擇提供重要參考。
鈦合金一直被廣泛應(yīng)用于航空制造工業(yè),其具有比強(qiáng)度大、密度小、耐熱性強(qiáng)以及耐低溫等優(yōu)良綜合性能,用它制造飛機(jī)零部件,不僅可以延長飛機(jī)使用壽命,而且可以減輕重量,降低燃料消耗,從而大大提高其飛行性能。
但鈦合金同時(shí)是一種典型的難加工材料,其導(dǎo)熱性差、化學(xué)活性高、加工硬化嚴(yán)重、刀具壽命短,并且由于單位切削力大、加工過程中極易發(fā)生顫振,顫振給工件留下的斜狀振紋,往往需要手工珩磨去除,影響加工效率,嚴(yán)重的直接導(dǎo)致工件報(bào)廢,甚至毀壞刀具,鈦合金加工的顫振問題,是制約航空制造質(zhì)量和效率的一大瓶頸。
控制顫振的方法一般均可歸結(jié)為增加系統(tǒng)阻尼。切削系統(tǒng)阻尼可分為機(jī)床結(jié)構(gòu)阻尼和由刀具后刀面與工件表面相互干涉而產(chǎn)生的阻尼,亦稱為過程阻尼(process damping)。過程阻尼的建模和標(biāo)定是近年國際學(xué)術(shù)界的研究熱點(diǎn),加拿大著名學(xué)者Altintas曾將其列為切削顫振中尚未解決的研究難點(diǎn)[1]。
Tlusty和Sission等人最早發(fā)現(xiàn)切削加工中的過程阻尼現(xiàn)象,隨著切削速度降低,車削加工的穩(wěn)定性極限可顯著提高[2~4]。Sission 還歸納出,切削速度、刀具后角和刃口半徑是影響過程阻尼的關(guān)鍵因素[4]。后來諸多學(xué)者針對(duì)過程阻尼進(jìn)行研究,指出后刀面與工件表面振動(dòng)波紋干涉形成的作用力是過程阻尼的來源[5~8]。文獻(xiàn)[9]通過一系列正交試驗(yàn),識(shí)別動(dòng)態(tài)切削力中的過程阻尼系數(shù),該試驗(yàn)由快速伺服系統(tǒng)控制,使得刀具以預(yù)期頻率和振幅振蕩,但該試驗(yàn)系統(tǒng)較為復(fù)雜,工作量很大。Budak和Tunc等人克服了試驗(yàn)建模的弱點(diǎn),在過程阻尼建模和系數(shù)標(biāo)定方面,進(jìn)行了較為細(xì)致的工作[10~12]。文獻(xiàn)[10]將正交車削的穩(wěn)定性極限預(yù)測解析法和顫振實(shí)驗(yàn)相結(jié)合,利用二者獲取的極限切深,直接標(biāo)定過程阻尼系數(shù)?;诖耍纸Y(jié)合能量分析,獲取侵入力系數(shù),之后計(jì)算侵入面積和切削力,建立車削的穩(wěn)定性分析模型。文獻(xiàn)[12]系統(tǒng)分析了切削參數(shù)和刀具幾何參數(shù)對(duì)過程阻尼的影響。Ahmadi和Ismail等基于小振幅假設(shè),將過程阻尼等效為線性粘性阻尼,利用半離散法,計(jì)算銑削穩(wěn)定性極限,該模型具有一定局限性,預(yù)測出的穩(wěn)定性極限低于實(shí)驗(yàn)值[13]。
目前,國際上對(duì)于過程阻尼的研究,主要集中在車削方面,對(duì)于銑削加工的過程阻尼,尚缺少完善的動(dòng)力學(xué)分析模型。其自由度多,受力分析需要坐標(biāo)轉(zhuǎn)換,切削力方程中存在時(shí)變系數(shù),對(duì)于侵入面積和過程阻力的描述遠(yuǎn)較車削困難。而國內(nèi)尚未有學(xué)者對(duì)過程阻尼進(jìn)行深入研究,在目前現(xiàn)有文獻(xiàn)中,切削穩(wěn)定性分析均采用較為傳統(tǒng)的線性模型[14,15],未考慮過程阻尼,該模型在低速區(qū)會(huì)產(chǎn)生很大誤差。而對(duì)于鈦合金加工來說,為保證刀具壽命,切削速度一般較低,這時(shí)如果還采用常規(guī)的線性模型,預(yù)測的極限切深遠(yuǎn)低于實(shí)際極限切深,勢(shì)必會(huì)影響加工效率。
鑒于此問題,本文建立一考慮過程阻尼的銑削動(dòng)力學(xué)模型,利用隱式四階龍格庫塔法,計(jì)算典型鈦合金材料加工時(shí),刀具后刀面與工件振動(dòng)波紋的侵入面積以及干涉阻力,繪制穩(wěn)定性極限圖。最終結(jié)合實(shí)驗(yàn)得出結(jié)論,本文所建非線性模型,能夠較為準(zhǔn)確地預(yù)測低速區(qū)的穩(wěn)定性極限,為鈦合金加工參數(shù)的選擇提供了參考。
鈦合金材料銑削中的顫振問題,是制約航空制造加工效率的一大瓶頸。為保證刀具壽命,鈦合金材料基本以較低速度進(jìn)行切削。這時(shí)如果按照傳統(tǒng)的線性模型,穩(wěn)定性極限很低,按照線型模型選擇切深,將對(duì)加工效率非常不利。本文針對(duì)此問題,建立了考慮過程阻尼的非線性銑削動(dòng)力學(xué)模型,計(jì)算由犁耕效應(yīng)形成的侵入面積,以及過程阻力。通過時(shí)域仿真方法計(jì)算臨界切深。實(shí)驗(yàn)結(jié)果表明,本文提出的計(jì)入過程阻尼的非線性計(jì)算模型能夠較為準(zhǔn)確地預(yù)測鈦合金加工時(shí)低速區(qū)的穩(wěn)定性極限。這樣就為鈦合金加工時(shí),常規(guī)工作速度下的參數(shù)選擇提供了必要參考。 參考文獻(xiàn):
[1] Altintas Y, Weck M. Chatter stability in metal cutting and grinding[J].Annals of the CIRP, 2004,53(2):619―642.
[2] Sisson T R, Kegg R L. An explanation of lowspeed chatter effects[J]. ASME Journal of Engineering for Industry,1969, 91(4):951―958.
[3] Tlusty J. Analysis of the state of research in cutting dynamics[J]. Annals of the CIRP, 1978, 27(2):583―589.
[4] Tlusty J, Ismail F. Special aspects of chatter in milling[J].ASME Journal of Engineering for Industry, 1983, 105(1):24―32. [5] Wu D W . A new approach of formulating the transfer function for dynamic cutting process[J]. ASME Journal of Engineering for Industry, 1989,111(1):37―47.
[6] Elbestawi M A, Ismail F, Du R, et al. Modeling machining dynamic including damping in the toolworkpiece interface[J]. ASME Journal of Engineering for Industry, 1994,116(4):435―439.
[7] Lee B Y, Tarng Y S, Ma S C. Modeling of the Process damping force in chatter vibration[J]. International Journal of Machine Tools and Manufacture , 1995,35(7): 951―962.
[8] Shawky A M, Elbestawi M A. An enhanced dynamic model in turning including the effect of ploughing forces[J].ASME Journal of Manufacturing Science and Engineering, 1997,119(1):10―20.
[9] Altintas Y, Eynian M, onozuka H. Identification of dynamic cutting force coefficients and chatter stability with process damping[J].CIRP AnnalsManufacturing Technology, 2008,57(1):371―374.
[10] Budak E, Tunc L T. A new method for identification and modeling of process damping in machining[J].Journal of Manufacturing Science and Engineering, 2009,131(5):1―10.
[11] Budak E, Tunc L T. Identification and modeling of process damping in turning and milling using a new approach[J]. CIRP AnnalsManufacturing Technology, 2010,59(1):403―408.
[12] Tunc L T, Budak E.Effect of cutting conditions and tool geometry on process damping in machining[J]. International Journal of Machine Tools and Manufacture, 2012,57: 10―19.
[13] Ahmadi K, Ismail F. Stability lobes in milling including Process damping and utilizing multifrequency and semidiscretization methods[J]. International Journal of Machine Tools and Manufacture, 2012,54/55:46―54.
[14] Altintas Y. 數(shù)控技術(shù)與制造自動(dòng)化[M].北京:化學(xué)工業(yè)出版社,2002. Altintas Y. Numerical Control Technology and manufacturing Automation[M].Beijing: Chemical Industry Press,2002.
[15] Altintas Y, Stepan G, Merdol D, et al. Chatter stability of milling in frequency and discrete time domain[J]. CIRP Journal of Manufacturing Science and Technology, 2008,1(1):35―44.
[16] Campomanes Marc L, Altintas Y. An improved time domain simulation for dynamic milling at small radial immersions[J]. Transactions of ASME Journal of Engineering, 2003,125:416―422.
[17] 林紫雄.間斷銑削的顫振穩(wěn)定性研究[D].南京:南京航空航天大學(xué),2011. Lin Zixiong.Research on the chatter stability of the interrupted Milling[D].Nanjing: Nanjing University of Aeronautics and Astronautics,2011.
[18] 劉強(qiáng),李忠群. 數(shù)控銑削加工過程仿真與優(yōu)化―建模、算法與工程應(yīng)用[M].北京:航空工業(yè)出版社,2011. Liu Qiang, LI Zhongqun. Simulation and Optimization of CNC Milling ProcessModeling,Algorithms and Applications[M].Beijing:Aviation Industry Press,2011. [19] 宋清華.高速銑削穩(wěn)定性及加工精度研究[D].濟(jì)南:山東大學(xué),2009. Song Qinghua.Highspeed milling stability and machining accuracy[D].Jinan: Shandong University,2009.
Abstract: The process damping in milling of Titanium alloy is analyzed and verified experimentally. Titanium alloy used commonly in aviation industry is one typical difficulttomachine material. Chatter usually occurs in machining of Titanium alloy because of high unit cutting force, which results in poor surface quality and damaged tool. Thus, chatter is one serious restriction for the quality and efficiency of aeronautical manufacture. The process damping results from ploughing effect, which was caused by interference between flank face and machined surface. The paper calculates the indentation area and resistance caused by interference in the milling of typical Titanium alloy and establish nonlinear model which consider process damping. The computing results indicate that limit cutting depth at low speed can be improved significantly relative to linear model and the experimental results indicates that the model can predict stability limitation at low speed accurately.
Key words: milling; chatter; Titanium alloy; process damping; ploughing effect.
相關(guān)鏈接
- 2018-10-27 醫(yī)用鈦棒、醫(yī)用鈦材料的顯微組織對(duì)材料疲勞性能的影響
- 2018-10-09 第十一屆中國國際鈦業(yè)展覽會(huì)暨中俄鈦產(chǎn)業(yè)高峰論壇在京圓滿落幕
- 2018-10-08 鈦合金熱處理設(shè)備
- 2018-10-08 鈦合金、鈦棒、鈦鍛件熱處理工藝條件的選擇
- 2018-10-05 醫(yī)用鈦棒、醫(yī)用鈦等鈦合金材料在醫(yī)療領(lǐng)域中的重要應(yīng)用
- 2018-10-04 TC4鈦合金棒、TC4鈦棒等鈦材料的激光修補(bǔ)焊接技術(shù)
- 2018-10-04 鈦材料相關(guān)工藝性能名詞小結(jié)
- 2018-10-04 鈦合金管、TA2鈦管退火處理工藝
- 2018-10-04 鈦棒、鈦板等鈦合金材料加工中滾具的主要形式和基本結(jié)構(gòu)組成
- 2018-10-04 鐵水包預(yù)處理脫鈦理論分析與試驗(yàn)研究